Phase Contrast Microscopy

Principles of Light Microscopy Course MPI-CBG

What is it?

Contrast-enhancing technique described first by Zernike in 1932 - Nobel price for physics in 1953

It can be utilised to produce high-contrast images of almost transparent specimens

Frits Zer

What is it good for?

- Living cells (usually in culture)
- Microorganisms
- Subcellular particles
- Thin tissue slices
- Lithographic patterns
- Fibers

Tissue Culture Cell

Principle of Phase Contrast

Modifying the light diffracted by the object and the undiffracted light in such a way that an amplitude contrast occurs

undiffracted light

diffracted light

Optical setup of Zernike' second experiment

diffracted light

DARK FIELD

Optical setup of Zernike second experiment

PHASE CONTRAST

ase contrast optical accessori

ase contrast optical accessori

Phase Specimens

An incident wave front becomes divided in to two components upon passing through a phase specimen:

- Undiffracted light (U) Planar wavefront -Primary component
- Diffracted light (D) Spherical wave front

U and D combine in the image plane through interference producing a Resultant wave (R)

• R = U + D

etection of the Specimen Imag

Considering R = U + D

- It depends on the relative intensity differences (amplitudes) of R and U
 - If R is significantly different in amplitude from U → Contrast
 - If R is NOT significantly different in amplitude from LL → No Contrast

Optical Path Length (OPL)

$OPL = n \times t$

Where "n" is the refractive index of the specimer and "t" its thickness

Phase shift $\delta = 2\pi \Delta / \lambda$

 \bigcirc

Optical Path Length (OPL)

$OPL = n \times t$

Where "n" is the refractive index of the specimer and "t" its thickness

Optical Path Difference (OPD)

 Δ = Optical Path Difference (OPD) = (n₂-n₁) x t

Where n_2 is the refractive index of the specimen and n_1 is the refractive index of the surrounding medium

a typical cell in monolayer culture:

Δ = 0.125 μm

ack of homogeneity due to the different OPL given b ifferent portion of the sample

lalo artefact caused by incomplete separation of th iffracted light from the undiffracted light

and its Effect on Contrast

