

Light has properties of particles and waves. If considered as a wave the planes of vibration are perpendicular to the propagation direction.

In 'natural light' these vibrations occur in all directions – nonpolarized light.

Natural light vibrates in all directions

In **Polarised Light** all but one of these directions have been 'filtered out'.

4. Polarized Light

4. Polarised Light - Birefringence

Double image of spot appearing in different xyz positions

4. Polarised Light - Birefringence

Birefringent / anisotropic materials:

- Separate a beam of light into two beams or waves
- Each wave is linearly polarized
- Polarisation direction perpendicular
- Refractive index depends on propagation direction

Ordinary beam (o):

- no refraction when incidence angle 90°

Extraordinary beam (e):

- refractive index depends on incidence angle
 - refraction of the beam

Different speed of $\mathbf{o} \& \mathbf{e}$ due to $\Delta n \longrightarrow$ phase shift when leaving material

No object, crossed polars

S

Birefringent object waves are split into o and e

Interference at analyser

because polarisation direction rotated to the same plane (like analyser) loss of intensity

Constructive Interference Lights up birefringent structures

4. Polarised Light - Example

Overlapping pieces of Sellotape

Crossed polars

4. Polarised Light - Example

Crystals of Acetanilide

Natural light

Crossed polars

4. Polarised Light - Example

erials

Birefringence in Biological Materials

Anisotropic materials will generally be birefringent

- What's anisotropic in the cell?
 - Polymers: DNA, actin, microtubules

BF

Membranes

Muscles:

POL

Zebra fish embryo

Good for seeing ordered structures in the cell:

Spindles, Other cytoskeletal structures, Membranes, Collagen

No staining required!

4. Polarized Light Microscopy

Try yourself

Setup:

- Köhler the microscope
- adjust polarizer and analyzer crossed polars (black background)

Specimen:

- Hair
- Zebrafish (muscles)
- Honey (sugar crystals), starch, urea
- plasic material (tesa tape, plastic ruler)

Additional information:

- no plastic dishes, as it is birefringent. Only use glass, or glass bottom dishes (no lid).
- some objectives are especially suited for polarisation. They are labeled with "DIC" or labels are in red letters. All other objectives still work.

Wave Optics - Polarisation

Polarized light as before is called Linearly Polarized Light.

... but there is more ...

Modified from: http://www.univie.ac.at/mikroskopie/1_grundlagen/optik/wellenoptik/6_polarisation.htm