

<u>Deconvolution – Pros & Cons</u> <u>3D microscopy</u>

"Systematic errors can be measured and corrected for"

Or

"Enhancing contrast and removing noise helps see the resolution that's really there"

CBG

Max Planck Institute of Molecular Cell Biology and Genetics Dan White –

Dan White – Oct 2010

Optical sectioning – 3D imaging

Digital sampling of 3 spatial dimensions

X and Y are easy, right...?

... but is Z special?

www.biomedical-engineering-online.com

Optical sectioning - methods:

- WM widefield microscopy
- CLSM confocal laser single point scanning
- SPD confocal multi point scanning
- 2P two photon
- TIRF total internal reflection fluorescence
- SPIM single plane illumination
- structured illumination microscopy
- widefield microscopy + deconvolution

"confocal" pinhole rejects out of focus light from <u>above</u> and <u>below</u> the <u>focal plane</u>

http://depts.washington.edu/keck/intro.htm

Make the PSF smaller? Confocal Sectioning

closed pinhole

Mouse kidney section Alexa Fluor 488 WGA Alexa Fluor 568 phalloidin

For a closed pinhole:

PSF is much smaller in z, bit smaller in x,y Michael Weber

open pinhole 50 µm

Good for fast images, smaller area at high resolution.

http://www.atto.com/technologies/imaging.shtml

spinning disc confocal scanner head

Spinning Disk : Multi point scanning confocal

- "field" illumination method
- Detector : CCD / EM-CCD
- High speed!!!
 - Faster than point scan
 - But still noisy
- Lower photobleaching
- Good for live samples
- Lower Z resolution
 - compared to LSCM
 - more out of focus signal

Britta Schroth-Diez

2 Photon Microscopy

Brad Amos MRC

Fluorescein

CO2 belfield.cos.ucf.edu

760nm,200fs

Two Photon Microscopy

- "point" illuminating technique
- detector : PMT
- Lower z resolution to LSCM (longer excitation)
- high penetration depth up to 500 um
- low temporal resolution (slow speed)
- low photobleaching
- low illumination light scattering
- high price (expensive laser)
- 1 or maybe 2 "colours" only
- Good for
 - Thick samples
 - Low light scattering
 - Living Samples

Total Internal Reflection Fluorescence

- field illuminating technique
- detector : CCD
- fast
- very high Z resolution ~150 nm
- one optical section only at plane close to cover glass
- Living sample
 - Fast dynamics

http://micro.magnet.fsu.edu/primer/java/tirf/reflect/index.html

Total Internal Reflection Fluorescence

TIRF only the objects <u>on</u> the coverslip

TIRF

Wide field

Britta S-D, Silke G

Life on a microscope slide

Sticking biology to flat glass is not very physiological...

SPIM

Single Plane Illumination Microscopy

Fiber

- field illumination technique
- detector: CCD
- high speed
- Isotropic Resolution xyz
 Multi angle reconstruction
- very low photobleaching/toxicity
- lower Z resolution (single angle)
- 3D mounting in physiological environment
- not commercially available yet

White, Preibisch, Saalfeld, Ejsmont, Sarov, Tomancak http://www.huisken.org/jan/spim.html

Structured illumination

Grid is projected onto specimen and moved in 1/3 steps of the grid period length. Elapsed image capture time = 1 second.

Three grid 🗲 movements yield one optical section containing only image data that is exactly within the focal plane.

> incrementally imaged optical section stacks.

Patented algorithm extrapolates only strong image signals from grid.

Collapse

5 The resulting structured-light composite image features haze-free, ultra-sharp focus. Also produce 3-D reconstructions using popular post processing software

Optigrid, **ApoTome** and **OMX**

- "field" illumination
- detector : CCD
- slow/medium speed
- high flexibility
- image processing required (fast)
- Good for fixed thinner samples, instead of confocal

conventional epi-fluorescence

OptiGrid[®]

Structured-Light

Laser-Scanning

Confocal Microscope

Widefield Microscopy + Deconvolution

- "field" illuminating technique
- Detector : CCD

- High temporal resolution (high speed)
- High flexibility
- Low bleaching / photo toxicity
- Very high signal:noise (low speckle)
- Image processing required (automated)
- Good for fixed and living samples.

Wide-field fluorescence + deconvolution Single plane – 2D blind deconv.

deconvolved image

raw image

Johanna Spandl

Wide-field fluorescence + deconvolution z-stack mono layer cultured cells on glass

raw image max Z projection deconvolved image max Z projection

Alex Bird / Dan White

Low signal:noise yeast live 3D imaging Spinning Disk Confocal

Deconvolution is also good at noise removal, revealing details and improving contrast in all kinds of microscopy images.

raw image max Z projection deconvolved image max Z projection

Davide Accardi / Dan White

Image of a point is not a point! The image of a point is convolved by the point spread function – PSF.

X

PSF size: WF>SD>SPIM>C

Ζ

Widefield microscope **Measured PSF** 1.4 NA Oil lens Watery sample **Spherical Aberation!**

Jesse Lipp, Dan White

Pixel Size / Resolution

Remember !!!

Spatial sampling:

~1/3 x smallest feature.

Remember !!!

A pixel is NOT a little square...

it is a spatial sample at some location x,y,z in space and time

<u>Remember !!! Think like a spectroscopist, not a photographer!</u>

2 points X and X – resolution limit apart, d

Pixel size = d/3

under sampled Can't see 2 objects over sampled Noisy, low contrast

Correct sampling Good contrast See 2 objects

Image of a point is not a point! The image of a point is convolved by the point spread function – PSF.

PSF size:

Widefield microscope PSF 1.4 NA Oil lens 1.515 Glassy sample 1.515

PSF is very much bigger in z than in x and y Why?

> Higher NA = better resolution, especially in Z!

Image of a point is not a point! The image of a point is convolved by the point spread function – PSF.

> Widefield microscope PSF 1.4 NA Oil lens 1.515 Watery Sample 1 Wave spherical aberration (eg approx. 10 um of water)

> PSF is very asymmetric in Z and also shifted in Z

WF-NA14-1515-neg1000SA (300%)
 31/61; 6050.00x6050.00 nm (121x121); 32-bit; 3.4MB

Image of a point is not a point! The image of a point is convolved by the point spread function – PSF.

> Widefield microscope PSF 1.4 NA Oil lens 1.515 2 Waves spherical aberration

PSF is very very very asymmetric in Z and also shifted very badly in Z

Confocal PSF is smaller than WF, but still significant in size.

PSFs with 1.4 NA Oil lens 1.515 Glassy sample 1.515

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

Spherical Aberation Kills Confocal Imaging

PSF with 1.4 NA Oil lens 1.515 Watery sample 1.33 10 um away from 0.17 mm coverglass

Quick and Dirty vs. Slow and Careful

•

Left mouse button draws a ruler. Middle mouse button zooms in on bright spots. Press <c> to center the slic

Default "High Noise" settings on DeltaVision don't handle very noisy images or CCD Offset well

091217 MC01 4vf02 4 R3D D3D

Help

More careful deconvolution using Huygens does a better job of dealing with noise and CCD offset

Tips to get it right:

1) Measure the PSF, or Correct aberrations to get close to perfect PSF Coverslip, immersion and mounting media.

2) Test different noise parameters until you get a reasonable result
 Don't enhance noise or smooth detail.
 The is a happy optimum

3) Look for "left over" intensity – wrong PSF

4) Look for "new" false objects, not in raw image.

5) Correct spatial sampling – noisy data OK.