

Defects of lenses

peter@microscopical.co.uk

Defects of lenses

- Simple single pieces of glass do not act as perfect lenses
- They suffer from several errors, or aberrations

The objective lens

The most important lens of the microscope

The principal Aberrations are:

 Spherical aberration
 caused because the surface of most lenses is made to be part of a sphere
 easy and cheap to make but it is *the wrong shape*

Chromatic aberration

 'colour' aberration
 caused because all materials from which lenses can be made have a different refractive index for each colour

Spherical aberration

Objective with 'correction collar'

APOCHROMAT 20 x 10,60 lan-APO Plan - APOCHROMA 100× 40x/1,0 Oil Iris 0/017 00/0,17 0,5 1,0

Magnification40xNumerical Aperture1.0Oil immersion1.0Iris in back focal plane5Corrected for infinite tubelengthCorrected for 0.17mm coverglass

Magnification10xNumerical Aperture0.30'Hell- und Dunkelfeld'Suitable for Differential Interference ContrastCorrected for infinite tubelengthCorrected for use without coverglass

The principal Aberrations are:

 Spherical aberration
 caused because the surface of most lenses is made to be part of a sphere
 easy and cheap to make but it is *the wrong shape*

Chromatic aberration

 'colour' aberration
 caused because all materials from which lenses can be made have a different refractive index for each colour

Chromatic aberration

The achromatic doublet

Types of objective lens

• Achromatic

- Chromatic aberration minimised for *two* wavelengths, and spherical aberration for *one* (usually green).
 - Relatively inexpensive
 - Adequate for routine work
 - Can give excellent results when used with green filter

Fluorite ('Semi-Apochromatic')

- Chromatic aberration better corrected than achromats due to optical properties of fluorite (calcium fluoride) lens elements.
 - Perform well at larger apertures than achromats
 - Simpler design and therefore cheaper than apochromats

Apochromatic

- Chromatic aberration minimised for *three* wavelengths, and spherical aberration for *two* wavelengths.
 - Virtually perfectly corrected, even for large apertures
 - Complex design, therefore very expensive

Lens Aberrations

Aberrations are minimised by careful design ...but only for certain conditions of use:

Correct matching of

- Objective
- Microscope stand
- Eyepiece

Microscope parts may seem to be *mechanically* interchangeable

But they are not **optically** interchangeable

Incorrect

Objective which *requires* compensating eyepiece, used with non-compensating eyepiece.

Note colour fringes at edges of field - red and blue images different sizes

Incorrect

Objective which *requires* compensating eyepiece, used with non-compensating eyepiece.

Purple filter emphasises colour fringes at edges of field - red and blue images different sizes

© Peter Evennett

Correct

Objective which *requires* compensating eyepiece, used with correct eyepiece.

Correct

Objective which *requires* compensating eyepiece, used with correct eyepiece.

Colour image without purple filter

Curvature of Field

