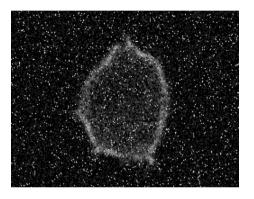
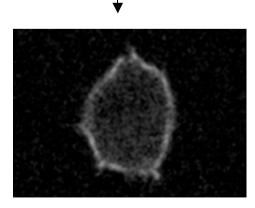
Basic techniques in IP - part 2:

Image processing in the spatial / frequency / time domain.

Filtering - Neighborhood -Fourier space - Time series

I. Image processing in the spatial domain

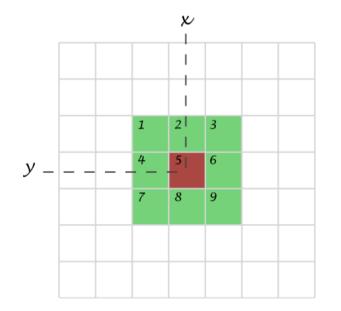




- A. Introduction
 - Neighborhood
 - Operation on neighbors
- B. Spatial filters
 - Mean filter
 - Median filter
 - Edge detection

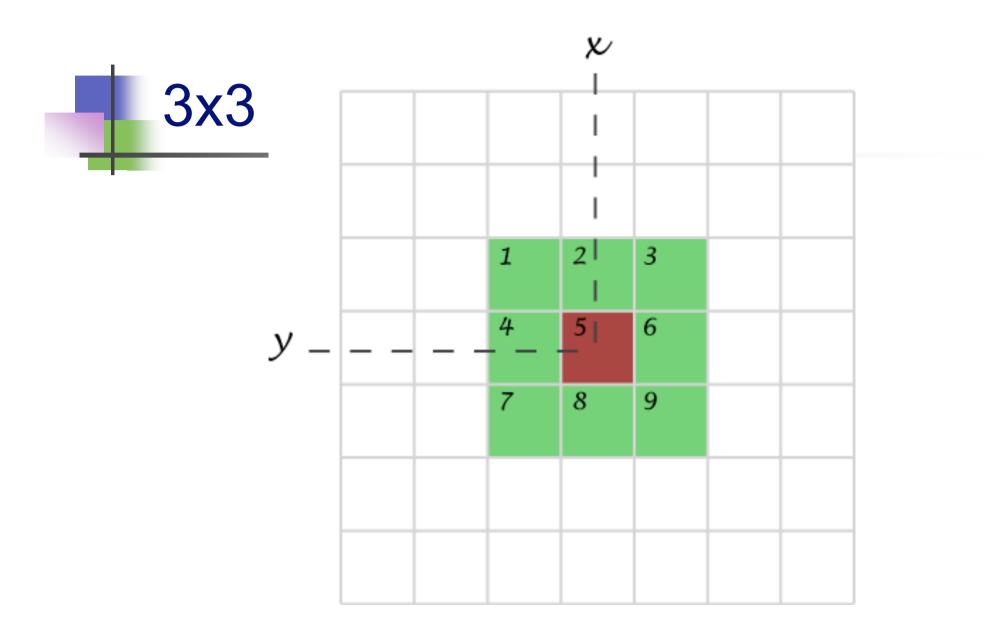
A. Introduction

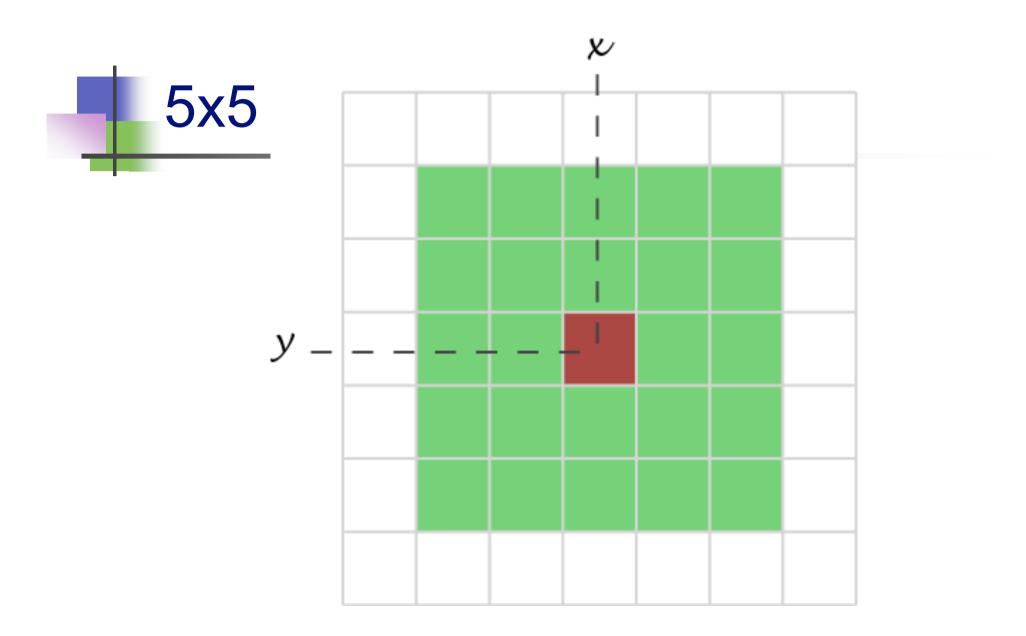
Definition

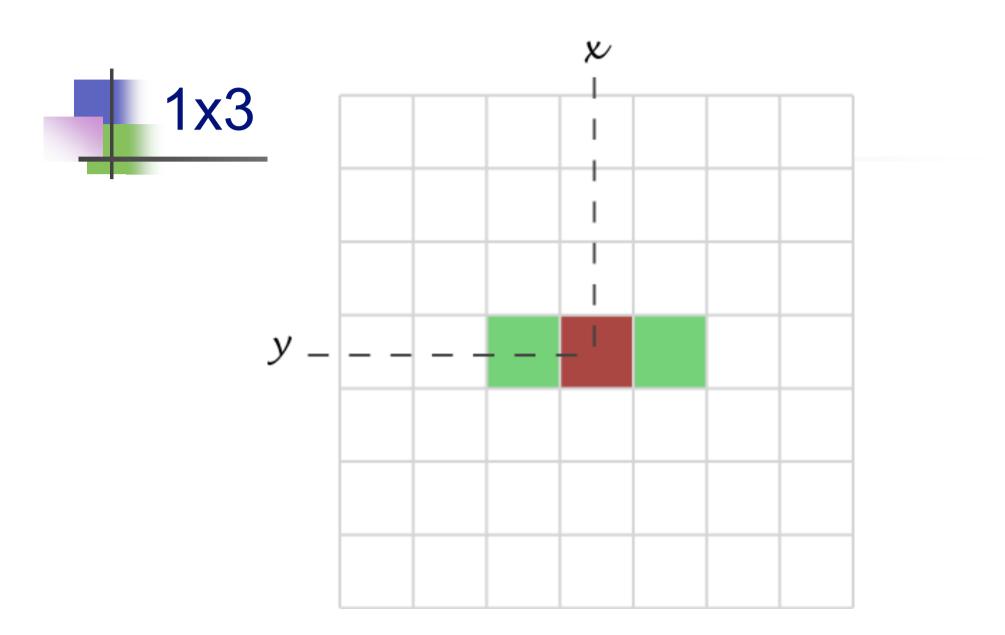


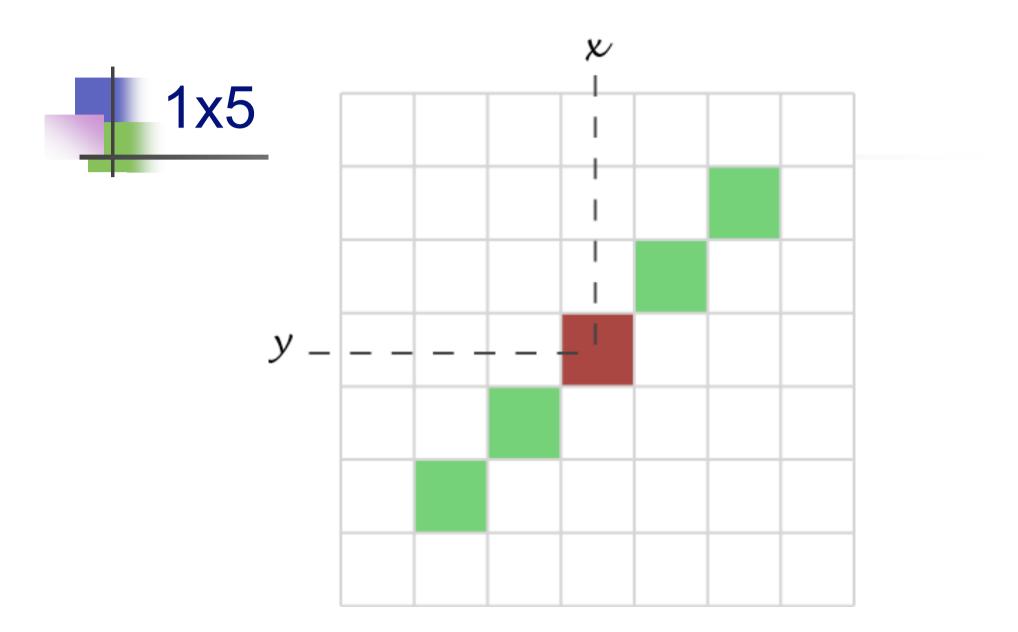
Neighborhood (or kernel): pixels that matters

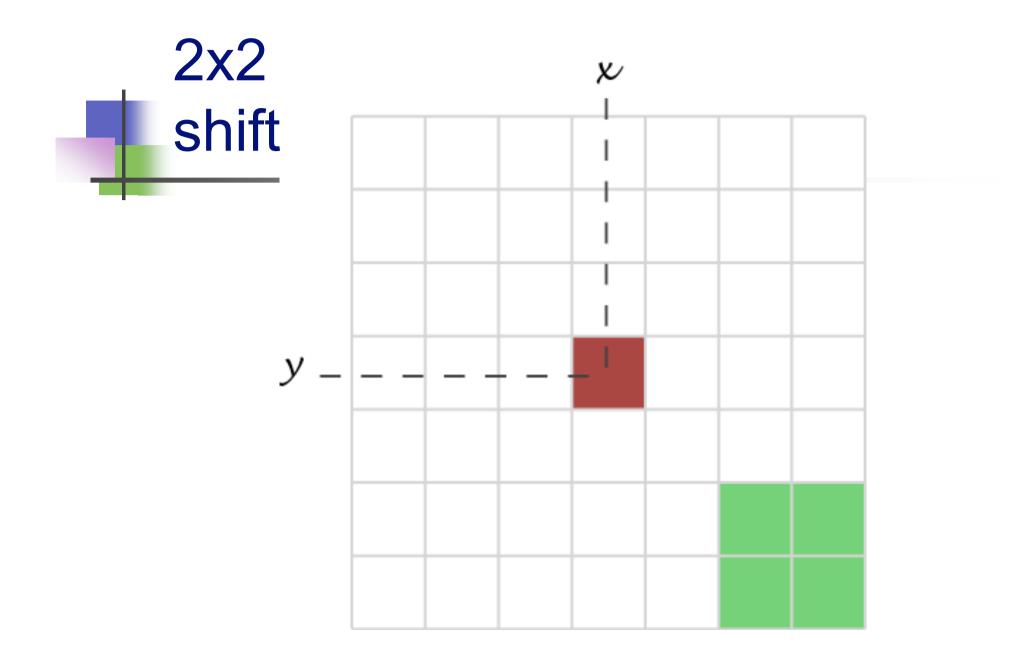
- " Transformation or set of transformations where a new image is obtained by *neighborhood operations*."
 - The intensity of a pixel in the new image depend on the intensity values of "neighbor pixels".

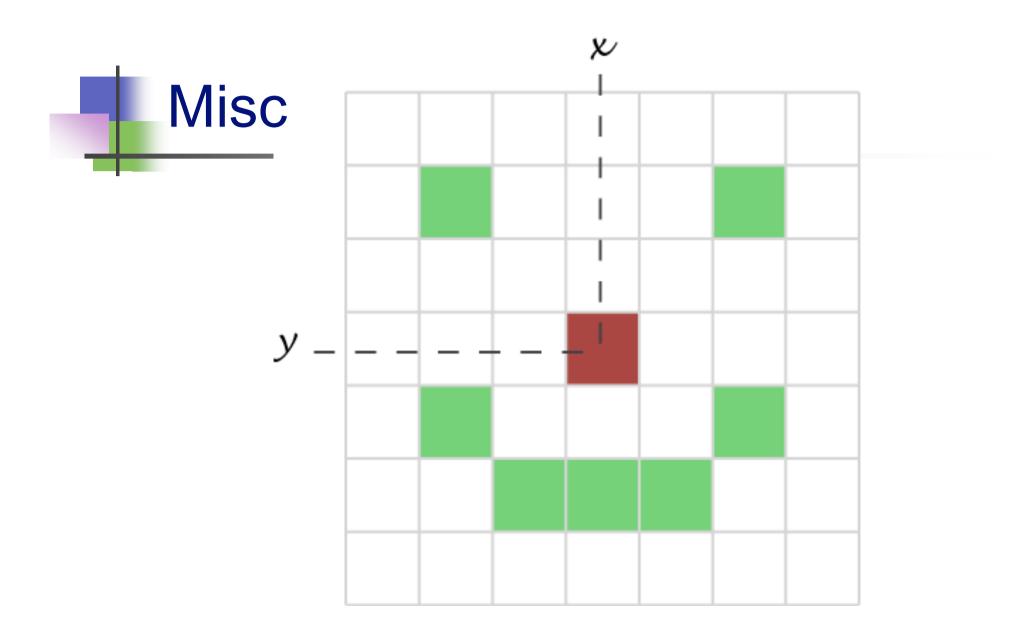






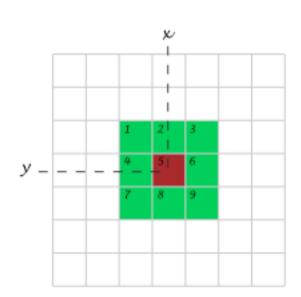






Simplest filter: the value of a pixel is replaced by the intensity mean computed over neighbors pixels

$$a_i^* = \frac{1}{N_\Omega} \sum_{j \in \Omega} a_j$$

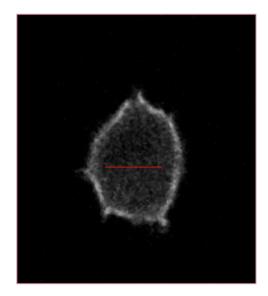


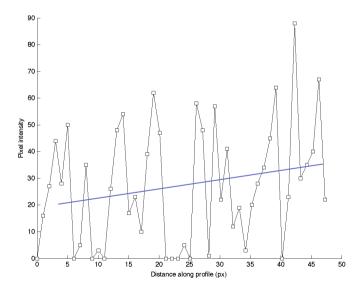
3x3 example:

$$a_i^* = \frac{1}{9} (a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9)$$

what is it good for?

Noise removal - typically Gaussian noise.





(typ. Appears for strong labeling, short exposure time)

properties

Main property: low-pass filter

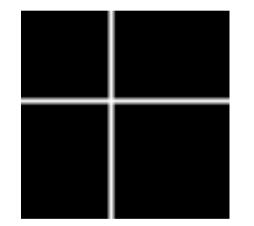
- kernel size influence
- number of successive applications

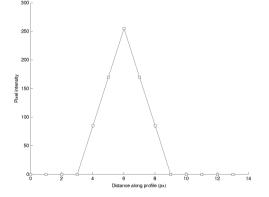
Cases where it fails

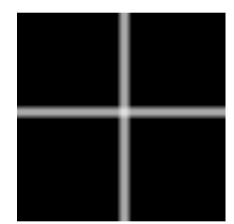
salt & pepper noise

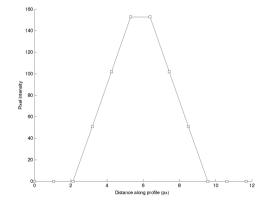
properties - kernel size

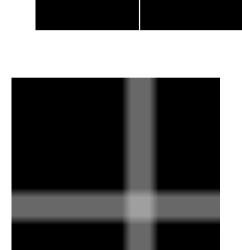
Zoom 10x

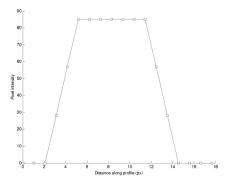






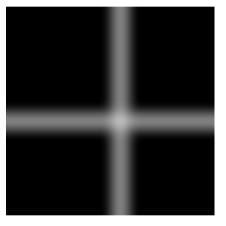


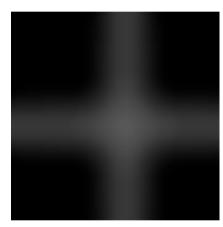


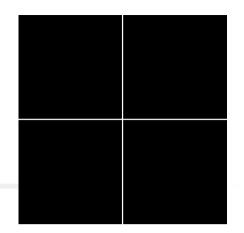


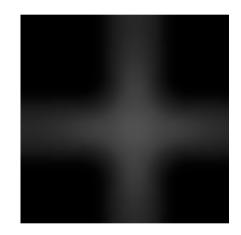
The mean filter properties - number of application

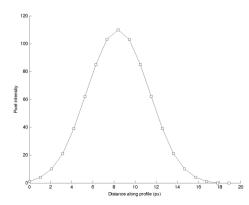
Zoom 10x

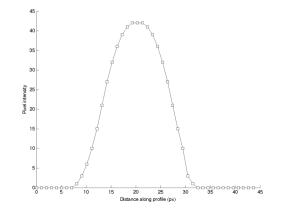


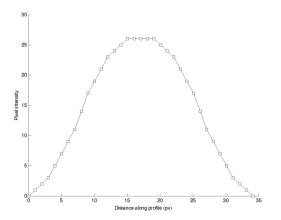








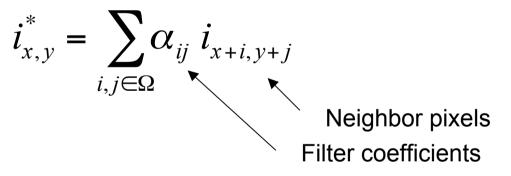


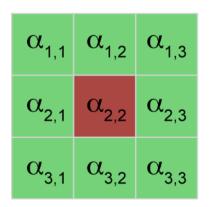


properties - linear filtering

The mean filter is a <u>linear filter</u>:

" The new pixel value depend on a linear combination of neighbor pixel values"





➔ another notation for 3x3 kernel

properties - linear filtering 2

Lot of properties:

• Suppose one image is made of a combination of images (*e.g.* $I = a_1 \times I_1 + a_2 \times I_2$, like in color combine or contrast change) \rightarrow applying a linear filter to it is the same as applying it to all <u>parts</u>, then making the combination.

• When applying a succession of linear filters \rightarrow <u>order</u> in which linear filters are applied does not matter.

• Mathematical framework underlying it \rightarrow <u>convolution</u> (see later).

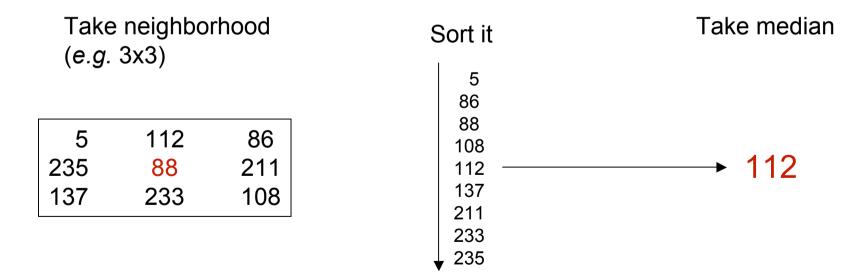
summary

- simplest filter fast
- is a linear filter
- average noise, does not eliminate it
- good against Gaussian noise
- blur images small details are lost in the average
- smooth edges dramatically
- trivial convergence

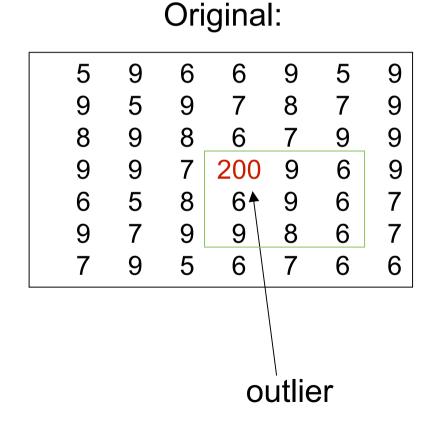
Low-pass filter

C. The median filter

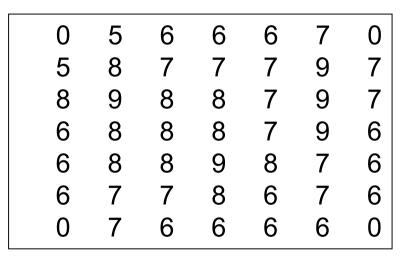
The value of a pixel is replaced by the *median* of the pixel intensity in neighbors pixels



noise elimination



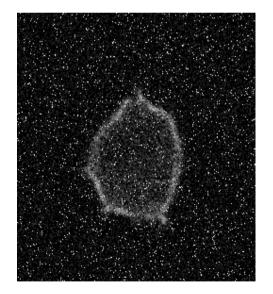
Median filtered:

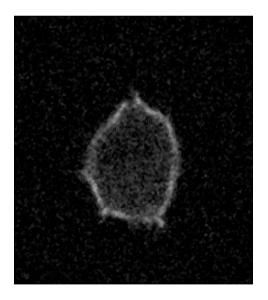


The outlier value has completely been removed from the dataset

what is it good for?

"Salt & pepper" noise removal Original: Median filtered:





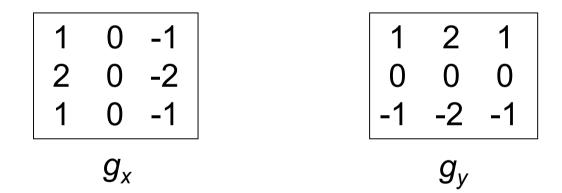
(typ. Appears for very weak labeling)

properties

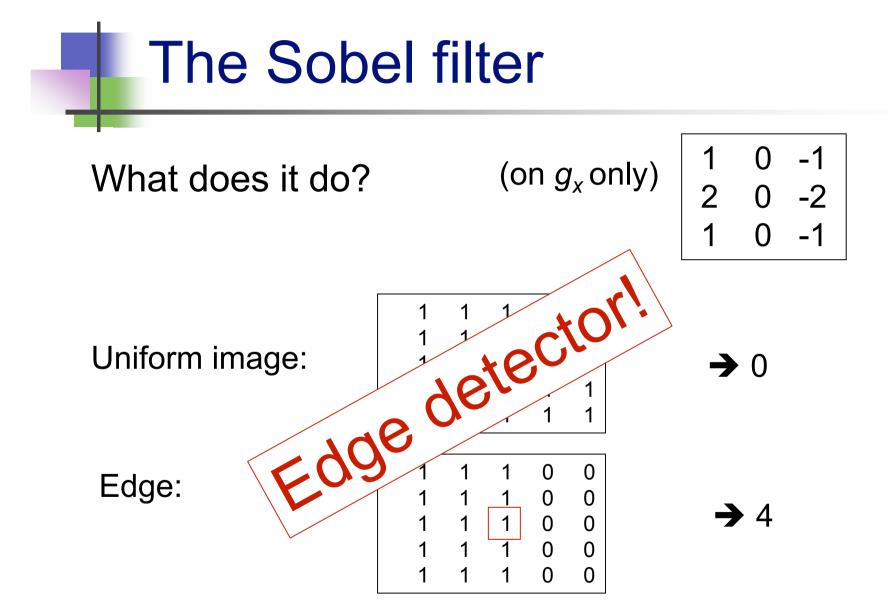
- Typically good for "Salt & pepper" noise removal
- Eliminates noise
- Slower than mean and similar (not such a problem anymore)
- Not linear
- Edge-preserving
- Non-trivial convergence

D. The Sobel filter

Combination of 2 filters:



output =
$$\sqrt{g_x^2 + g_y^2}$$



The Sobel filter edge detector

> g_x detects edges in the X direction g_y detects edges in the Y direction The output is ~ the <u>edge gradient magnitude</u>

output =
$$\sqrt{g_x^2 + g_y^2}$$

II. Image processing in the Fourier domain

Before:



- A. The Fourier transform
 - Introduction
 - Examples and measurements
- B. The *inverse* Fourier transform
 - Principles
 - Filtering

A. The Fourier transform

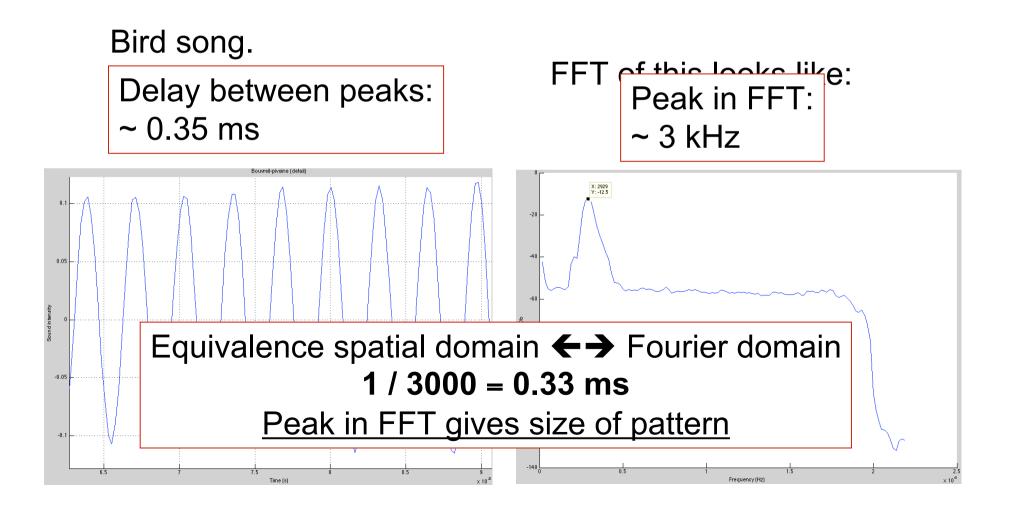
- The Fourier transform is a way to obtain a new *representation* of the data.
- It is best suited for data with *repetitive patterns* and highlights these patterns.
- It's mathematical definition (1D, discrete) is:

$$\hat{I}_k = \sum_n I_n e^{-2i\pi k/n}$$

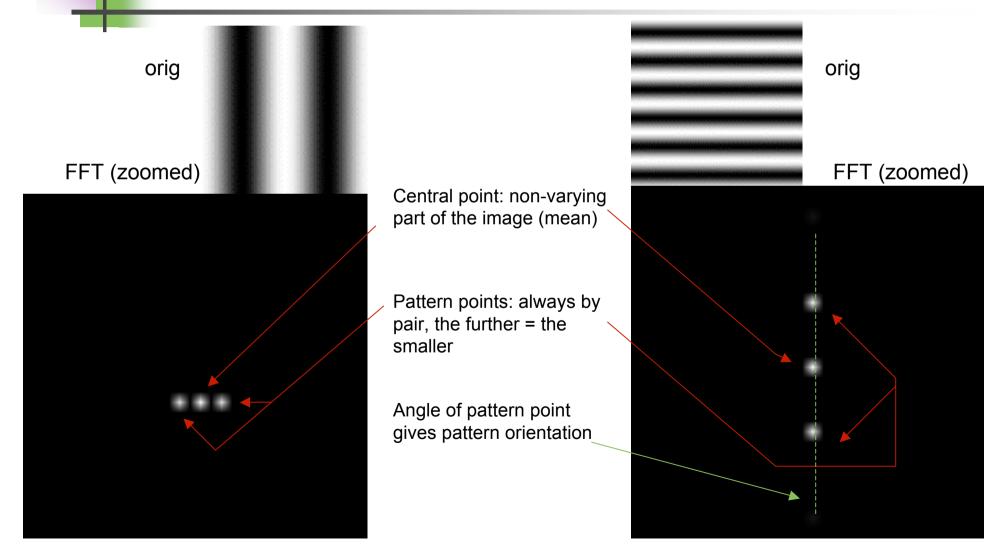
(we don't have to care too much)

• It is best explained with a music player.

The Fourier transform the Bouvreuil-Pivoine

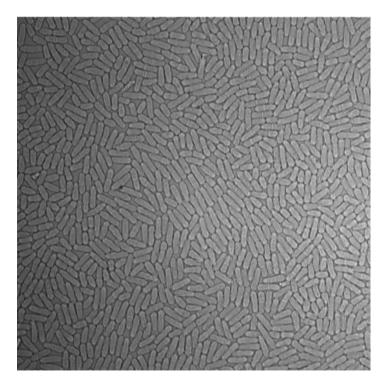


The Fourier transform in 2D (images)

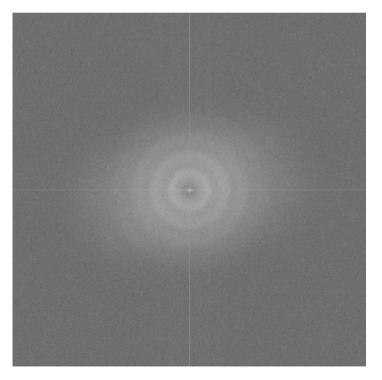


The Fourier transform real images

... are rarely that clear



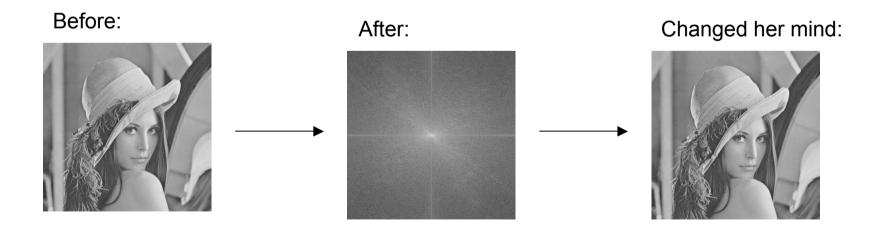
S pombe cells (*Tolic lab*)



FFT

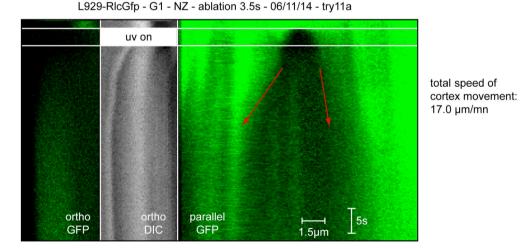
B. The *inverse* Fourier transform

Because the Fourier image and the real image contain the same amount of info, it is possible to generate a real image from its Fourier representation:



III. Time domain

Dealing with multiple images files (a.k.a. *stacks*): timelapse movies, 3D stacks, ...



- Intensity over time
- Kymographs

Motion blur

Motion blur = 1x10 neighborhood + average

Blackboard