

DIFRACTION

Constructive & Destructive interference **Amplification** In phase wavelength Cancellation 180° out of phase

Transmitted-light. Bright-field

An unusual way of looking at things!

Consider that every ray leaving the object carries some information about fine detail in the object

Transmitted-light. Bright-field

An unusual way of looking at things!

Consider that every ray leaving the object carries some information about fine detail in the object

100µm

Airy and Rayleigh

Airy (1801 - 1892)

Astronomer

The image of a point source formed by a lens of finite diameter was a disk with halos around it (left) whose properties depended entirely on the size of the lens.

Rayleigh (1842 - 1919) explained how the wave nature of light determined how it was scattered (Rayleigh scattering). In microscopy he gave the first mathematical analysis of resolution, defining a resolution criterion based on the Airy disk and showing how it was determined by the Numerical Aperture of the objective.

The Image of a point...is not a point Original object This is caused by Image of a point source: The Airy Pattern

RESOLUTION is not a measure of how small an object we can see, it is the ability to distinguish which are closer together

Image of a point source: the *Airy Pattern*

Small aperture

Airy discs

Larger aperture

The Image of a point....

Larger aperture and shorter wavelength

smaller disc

better resolution

 $N.A = n. Sin \alpha$

.....What does it mean?

A practical example...

$$r = \lambda / 2n \sin \alpha$$

 $r = \lambda / 2NA$

 $\lambda = 550$ NM (GREEN CENTRE OF THE SPECTRUM)

SIN **C** = 0.65 (HALF THE ANGLE 40.50; ACCEPTANCE ANGLE 810)

Typical value for 40X objective

$$r = 550 = 423 \text{nm}$$

2 X 0.65