

Increasing image contrast

Features

Low contrast

Features

Edge contrast

Features

Colour contrast

C Peter Evennett

Contrast may be altered:

- In the Specimen by Staining
- In the Microscope by optical techniques

Colour Filters

Dark Field

Phase Contrast

Differential Interference Contrast

In the Photographic Image by

Choice of film

Choice of developer

Choice of printing paper

In the Video or Digital Image by

Electronic adjustments

Computer manipulation

Absorption, Transmission and Reflection

Absorption, Transmission and Reflection

Absorption, Transmission and Reflection

- Absorption, Transmission and Reflection
- Scattering
- Refraction
- Phase change

and Diffraction

and Polarization

Light incident upon specimen

- Absorption, Transmission and Reflection
- Scattering
- Refraction
- Phase change
- Fluorescence

and Diffraction and Polarization

Light incident upon specimen

- Absorption, Transmission and Reflection
- Scattering
- Refraction
- Phase change
- Fluorescence

and Diffraction

and Polarization

The contrast mechanism converts these effects into variations of *brightness* or colour

- the only variations that the human eye, photographic film or electronic sensors are able to detect

Stained section of Xenopus pituitary gland

Three Primary Colours

Mixing coloured lights - Secondary Colours

Mixing coloured lights - Secondary Colours

Mixing coloured lights - Secondary Colours

Mixing coloured lights Secondary Colours and white

Complementary colours

Complementary colours

Complementary colours

