

The workspace

Calling functions

A function is something you ask Matlab to
execute. It has a name and a comma-separated
parameter list.

Example: disp('Hello, World!')

A function can return a value.

Example: rand()

Note: to suppress output, you can add a
semicolon (“;”)

The command history

Matlab records all commands in the history:

Double-click on an item to repeat it; alternatively,
you can use Cursor Up/Down to go back/forth.

Tab completion

If you hit the Tab key (it is on the left of your
keyboard, just above the Caps Lock key) after
typing part of a function, Matlab will complete it,
or show you alternatives if there are multiple
completions.

Another convenient way
to explore available
functions is to click on
the little fx symbol on the
left border of the
command window.

Variables

All values (numbers, text, matrices, etc) can be
stored in variables. A variable has a name.

Assigning a value to a variable: height = 10

Using a variable: disp(a)

Non-trivial assignment: second = first

Note: the name on the left side refers to the
variable itself, while the name on the right side is
interpreted as the variable's current value.

Variables (continued)

If you call a function returning a value without
assigning it to a variable, the value is stored in
the special variable ans:

Example: cos(pi)

Variable names are case-sensitive.

Example: PI

Variables (continued)

Variable names consist of a letter or underscore,
followed by an arbitrary number of letters,
underscores or numbers.

Example: a; hello123

Invalid: 1first

Note: Make sure you choose sensible names! Six
months from now, you do not remember what “c”
was supposed to mean...

Variables (continued)

All variables are listed in the workspace:

Double-click in the workspace to edit the variable.

Operators

Arithmetic expressions consist of operators such
as +, ­, *, /.

Example: (2^3 – 5) * 7 + tanh(1)

Operators always operate on two entities, one to
the left of the operator, and one to the right.

Types

Numbers*, text (so-called strings), vectors and
matrices are types.

Example: [1 0 1] is a row vector

Example: [1 0 0; 0 1 0; 0 0 1] is the 3x3
 identity matrix

Example: 'Hello, MPI' is a string

* Numbers can be 8-bit, 16-bit, 32-bit signed/unsigned integers, or 32-bit, 64-bit
floating point numbers.

Vectors and Matrices

Originally, Matlab (“Matrix laboratory”) was
designed as an easy user interface to a large
library of linear algebra functions implemented in
Fortran.

To this date, vector and matrix operations are the
strongest points of Matlab.

For example, typing a single number is
equivalent to typing a 1x1 matrix.

Vector and Matrix operators

Matrix multiplication: 2 * [3 ­1]

Transposed matrix: [5 4]'

Dot product: [1 2] * [3 1]'
also: dot([1 2], [3 1])

Point-wise multiplication: [1 2] .* [3 1]

Convoluted dot product:
sum([1 2] .* [3 1])

Accessing Vectors and Matrices

Single value: matrix(row, column)

Submatrix: matrix(2:3, 1:3)

Column vector: matrix(row, :)

Matrix as vector: matrix(:)

Identity matrix: eye(3)

Linear and logical indexing

You can access a matrix as if it was a single
column vector: matrix(2:5)

Make a logical matrix: matrix > 1

The logical matrix consists of boolean entries, i.e.
true or false. Boolean values can be used as
if they were 1 (= true) or 0 (= false).

Logical indexing (extract certain elements from a
vector (or matrix): matrix(matrix > 1)

Cell arrays

Cell arrays are lists that can contain non-
numerical values.

Example:
cell{1} = 'Hello'; cell{2} = 2;

Structs

Structs are like cell arrays, but the items are
references by a name rather than an index.

Example:
bag.label = 'Hello'; bag.x = 2;

Note: If you know object-oriented script
languages like Python or Perl, you will recognize
this “bag of things” approach of representing
objects.

Types of variables

Variables have implicit types: when assigning a
value to a variable, the type is inferred.

Example: bag = 1; bag.name = 'Hello';

You cannot reuse a numerical array as a cell
array directly.

Example: bag = 1; bag{1} = 2;

Loading and Saving data

To remember the variables in your workspace,
just save them into a file:

save('/path/to/file.mat')

To save just a part, append the names of the
variable(s) to the parameter list.

save('/path/to/file.mat', 'bag')

You can load the variables from the file later:

load('/path/to/file.mat')

Plots

Given a list of values or coordinates, it is very
easy to plot the values:

List of values: plot(values)

List of coordinates: plot(x, y)

Double log plot of a list of coordinates:
loglog(x, y)

Help!

If you forgot how to call a certain function (e.g.
what parameters it takes), ask for help:

help save

Or ask for more verbose help in an extra window:

doc save

You can search the help for a keyword, too:

docsearch save

Scripts

For recurring tasks, you can save a sequence of
commands into a file (file extension: .m).

Example: edit hello.m

This script can be called by its name: hello

Note: on Linux, the keyboard bindings of Matlab
are imitating Emacs (Ctrl+X Ctrl+S instead of
Ctrl+S for saving).

Note2: you can edit the file with any editor you like!

Paths

Matlab looks for scripts in the current folder:

There is also a search path: File>Set Path...

User functions

Instead of scripts, you can write functions into the
file. Example:

function [mean,stddev] = stat(x)
n = length(x);
mean = sum(x)/n;
stddev = sqrt(sum((x­mean).^2)/n);

Note: the file and function name must match.

Note2: A function can return a list; the specified
variables must be assigned a value in the function.
Use a statement like [mean s] = stat(x) to
assign the return values to variables.

Scripts vs functions

There are a few differences between scripts and
user-specified functions.

Most notably, functions can take and return values.

And while the variables used in scripts are living in
the workspace, the variables used in the functions
do not.

Natural progression:
interactive fooling around → script* → function

* You can select part of the command history and Create Script in the context menu

Comments

When programming a cool function, it is often
necessary to add information for yourself, so you
do not get confused by your own code 6 months
later!

Example:

values = rand(10)
% Cut off at 0.5 (disallow smaller)
values = max(0.5, values)

Note: often, code is commented out, i.e. disabled

Conditionals

Sometimes, functions need to behave differently in
certain conditions.

Example:

if x < 5
disp('x is too small!')

end

Note: the part between the condition and the end
keyword is called code block and should be
indented (you'll thank yourself 6 months from now).

Conditionals (continued)

Conditionals can have alternative clauses

Example:

if x < 5
disp('x is too small!')

elseif x > 10
 disp('x is too large!')
else

 disp('x is just perfect!')
end

Loops

To execute a code block multiple times, make a for
or while loop:

sum = 0
for k = 1:10
sum = sum + k

end

sum2 = 1
while sum2 < 100
sum2 = sum2 * 2

end

Note: i denotes the
complex number
(i^2 = ­1), and
likewise j, so using
those letters as
variables works, but
is quite slow.

To execute a code block multiple times, make a for
or while loop:

sum = 0
for k = 1:10
sum = sum + k

end

sum2 = 1
while sum2 < 100
sum2 = sum2 * 2

end

Java

Java libraries can be used easily inside Matlab:

% Tell Matlab where the library is
javaaddpath /Users/me/library.jar
% Tell Matlab about the class
import my.Clazz

 % create an instance of the class
 instance = Clazz();

Tip: you can use all of Fiji by adding Fiji's scripts/
directory to the search path and calling

Miji(false);

Input

Often, it is useful to have a function ask for
interactive input.

Example:

count = input('How often? ');
disp(strcat(['You said ',...
num2str(count),...
' times?']));

Anonymous functions

In some cases, you might want to assign a code
block rather than a value to a variable.

Example:

myfunc = @(x)(x + 2);
myfunc(1)

 myfunc = @(x)(x ^ 3);
 myfunc(1)

This is important e.g. when using the optimization
toolbox, to specify the target function.

Debugging

The most tedious part of developing code is always
the debugging. (Computers do what we tell them to
do instead of what we want them to do.)

The most important tool to find out what is
happening is to simply remove the semicolons from
certain lines, to see the intermediate results.

Another tool is to use the disp()function to output
so-called debug messages.

Debugging (continued)

Alternatively, you can use the builtin debugger.

Simple profiling

If your code runs slow, you need to find out what
parts are responsible for the slowness. This is
called code profiling.

The easiest form of profiling is provided by the tic
and toc functions:

 tic
 for k = 1:10000
 disp(k);
 end
toc

Further reading

The Mathworks has a metric ton of documentation:

http://www.mathworks.com

We also try to have useful information on the Wiki:

http://wiki/wiki/imagepro/index.php/MATLAB

The best source for additional Matlab code:

http://www.mathworks.com/matlabcentral/

http://www.mathworks.com/
http://wiki/wiki/imagepro/index.php/MATLAB
http://www.mathworks.com/matlabcentral/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

