Phase contrast 1933

Frits Zernike

1886 - 1966

Chromosomes of Chironomus

Phase contrast Kurt Michel 1942

Phase plate retards scattered light another ¼λ, providing ½λ phase difference

Specimen scatters light into objective

and retards it a little - about 1/4λ

Illuminating annulus in front focal plane of condenser

C Peter Evennett

Adjustment of illuminating annulus

as seen in the back focal plane of the objective

Illuminating annulus adjusted so that its image coincides with phase ring

Phase contrast set

Phase contrast

- Because they consist of areas of different refractive index from their surroundings, transparent, non-absorbing objects produce small differences in the *phase* of light which encounters them, but only small differences in its *amplitude*.
- Thus they are invisible in the microscope image.
- Phase contrast is a technique for converting an invisible image into a visible image.

Unmodified 'zero-order' beam

Resultant beam in image of non-absorbing object

Resultant beam is slightly retarded from zero-order beam

Positions where amplitudes are equal

Positions where amplitudes are equal

In these positions the diffracted ray must have a value of zero

Positions where amplitude of resultant is *less* than that of zero order

In these positions the diffracted ray must have a negative value

Positions where amplitude of resultant is *greater* than that of zero order

In these positions the diffracted ray must have a positive value

Points for plotting the diffracted ray

Diffracted ray required to convert zero order into resultant

Diffracted ray is one quarter wavelength behind zero order

Quarter of a wavelength

The diffracted ray differs from the zero-order by one quarter of a wavelength

- ...and we know that this leads to an invisible image because of lack of contrast.
- We know too that with an absorbing object, there
 is one-half a wavelength difference, and this leads
 to good contrast.
- If we were able to convert the quarter-wavelength difference into a half-wavelength difference, the non-absorbing object would appear in the image as if it were an absorbing object.

Diffracted ray retarded by another one quarter wavelength

Diffracted ray shifted to left by a further $\lambda/4$ by phase plate

Diffracted beam now approximately half a wavelength behind zero order

Diffracted ray now one half wavelength behind zero order

The diffracted ray is now in a position to interfere destructively with the zero order, but it is of lower amplitude

Diffracted ray now one half wavelength behind zero order and amplitude of zero order reduced

The diffraction pattern of our non-absorbing object has been converted into a diffraction pattern similar to that of an absorbing object - so the image looks like an image of an absorbing object.