Biopolis Dresden Imaging Platform

Developmental endothelial locus-1 modulates platelet-monocyte interactions and instant blood-mediated inflammatory reaction in islet transplantation.

Kourtzelis I1, Kotlabova K, Lim JH, Mitroulis I, Ferreira A, Chen LS, Gercken B, Steffen A, Kemter E, Klotzsche-von Ameln A, Waskow C, Hosur K, Chatzigeorgiou A, Ludwig B, Wolf E, Hajishengallis G, Chavakis T.

Platelet-monocyte interactions are strongly implicated in thrombo-inflammatory injury by actively contributing to intravascular inflammation, leukocyte recruitment to inflamed sites, and the amplification of the procoagulant response. Instant blood-mediated inflammatory reaction (IBMIR) represents thrombo-inflammatory injury elicited upon pancreatic islet transplantation (islet-Tx), thereby dramatically affecting transplant survival and function. Developmental endothelial locus-1 (Del-1) is a functionally versatile endothelial cell-derived homeostatic factor with anti-inflammatory properties, but its potential role in IBMIR has not been previously addressed. Here, we establish Del-1 as a novel inhibitor of IBMIR using a whole blood-islet model and a syngeneic murine transplantation model. Indeed, Del-1 pre-treatment of blood before addition of islets diminished coagulation activation and islet damage as assessed by C-peptide release. Consistently, intraportal islet-Tx in transgenic mice with endothelial cell-specific overexpression of Del-1 resulted in a marked decrease of monocytes and platelet-monocyte aggregates in the transplanted tissues, relative to those in wild-type recipients. Mechanistically, Del-1 decreased platelet-monocyte aggregate formation, by specifically blocking the interaction between monocyte Mac-1-integrin and platelet GPIb. Our findings reveal a hitherto unknown role of Del-1 in the regulation of platelet-monocyte interplay and the subsequent heterotypic aggregate formation in the context of IBMIR. Therefore, Del-1 may represent a novel approach to prevent or mitigate the adverse reactions mediated through thrombo-inflammatory pathways in islet-Tx and perhaps other inflammatory disorders involving platelet-leukocyte aggregate formation.

  • Thromb Haemost. 2016 Apr;115(4):781-8.
  • 2016
  • Medical Biology
  • 26676803
  • PubMed

Enabled by:

Back to list